Self-adaptive and Deterministic Parameter Control in Differential Evolution for Constrained Optimization
نویسندگان
چکیده
In this Chapter we present the modification of a Differential Evolution algorithm to solve constrained optimization problems. The changes include a deterministic and a self-adaptive parameter control in two of the Differential Evolution parameters and also in two parameters related with the constraint-handling mechanism. The proposed approach is extensively tested by using a set of well-known test problems and performance measures found in the specialized literature. Besides analyzing the final results obtained by the algorithm with respect to its original version, some interesting findings regarding the behavior found in the approach and in the values observed on each of the parameters controlled are also discussed.
منابع مشابه
Self-adaptive Differential Evolution Algorithm for Constrained Real-Parameter Optimization [CEC7569]
In this paper, we propose an extension of Self-adaptive Differential Evolution algorithm (SaDE) to solve optimization problems with constraints. In comparison with the original SaDE algorithm, the replacement criterion was modified for handling constraints. The performance of the proposed method is reported on the set of 24 benchmark problems provided by CEC2006 special session on constrained r...
متن کاملControl Parameters in Self-adaptive Differential Evolution
Abstract In this paper we present experimental results to show deep view on how selfadaptive mechanism works in differential evolution algorithm. The results of the self-adaptive differential evolution algorithm were evaluated on the set of 24 benchmark functions provided for the CEC2006 special session on constrained real parameter optimization. In this paper we especially focus on how the con...
متن کاملComparison of Parameter Control Mechanisms in Multi-objective Differential Evolution
Differential evolution (DE) is a powerful and simple algorithm for singleand multi-objective optimization. However, its performance is highly dependent on the right choice of parameters. To mitigate this problem, mechanisms have been developed to automatically control the parameters during the algorithm run. These mechanisms are usually a part of a unified DE algorithm, which makes it difficult...
متن کاملReplicator Dynamic Inspired Differential Evolution Algorithm for Global Optimization
Differential Evolution (DE) has been shown to be a simple yet efficient evolutionary algorithm for solving optimization problems in continuous search domain. However the performance of the DE algorithm, to a great extent, depends on the selection of control parameters. In this paper, we propose a Replicator Dynamic Inspired DE algorithm (RDIDE), in which replicator dynamic, a deterministic mono...
متن کاملTuning of Extended Kalman Filter using Self-adaptive Differential Evolution Algorithm for Sensorless Permanent Magnet Synchronous Motor Drive
In this paper, a novel method based on a combination of Extended Kalman Filter (EKF) with Self-adaptive Differential Evolution (SaDE) algorithm to estimate rotor position, speed and machine states for a Permanent Magnet Synchronous Motor (PMSM) is proposed. In the proposed method, as a first step SaDE algorithm is used to tune the noise covariance matrices of state noise and measurement noise i...
متن کامل